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Edge Case Research

Formed in 2013 by Carnegie Mellon researchers to make complex software more robust
Team of over ten people with deep experience in dependability, robotics, and testing

Clients across markets including consumer electronics, automotive, defense, robotics, mining,
industrial, power, finance, etc.
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Collaborative Robotics Today

Image: Rethink Robotics
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Collaborative Robotics of the Future

For some tasks, maximizing
productivity will demand more
sophisticated interaction than
what is achievable with
discretized safety zones.
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A General Formulation of the Problem

Safety (green) and danger (red) zones. As long as these zones are disjoint (left) then safety is maintained
and robots may operate normally. Once they intersect (right) safety may be compromised and robots must
achieve a safe state. (Anderson-Sprecher, 2011)
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Example: The Hybrid Safety System

Carnegie Mellon developed the
HSS for the Office of Naval
Research’s Automated
Weapons Assembly program for

Image: Carnegie Mellon

semi-automated work cell for
shipboard munitions assembly.
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Autonomy Meets Safety

“Validation: The process of determining that the
requirements are the correct requirements and that
they are complete.”

Software Considerations in Airborne Systems
and Equipment Certification
(RTCA DO-178C)
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Autonomy Meets Safety

“Uncertainty arises because of both
laziness and ignorance. It is inescapable
iIn complex, nondeterministic, or
partially observable environments.”

Stuart Russell and Peter Norvig
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Collaborative Robotics Technologies

High-Dimensional
Motion Planning

Perception
and Modeling
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Motion Planning

« Highest performance approaches
Involve Monte Carlo sampling

 Implications for testing and validation:

* If you can carefully control random N ;
number generator, maybe you can g‘%}}g—s = zi
reproduce behavior in unit test jM S

 Test reproducibility may be impossible at Video: MIT
the system level

* Validation demands a large, statistically
significant number of tests across many
different scenarios

« Algorithm failures may not indicate test | o
failures

(Choudhury et al., 2015)
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 Ultimately we want the safety system to
sense the location, speed, and posture
of all persons in the work cell

« 3D perception is an extremely complex
problem!
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(Felzenszwalb et al., 2010)
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Perception Is Deep Learning

ILSVRC top-5 error on ImageNet
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(Sapunov, 2016)
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Challenge: Legibility of Deep Learning

e Can humans understand how
deep learning works?

* Deep learning “learns” features and
rules from training data

« Commonly the weighting Is
Inscrutable, or at least not intuitive

* There is an unknown (significant?)
chance results are brittle

* E.g., accidental correlations in training
data, sensitivity to noise
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Challenge: Brittleness

Magnified Not a
Car Not a Magnified Difference Bus
Car Difference 13

(Szegedy et al., 2013)
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Challenge: Lack of Requirements

* The "V process” model prescribed
by software safety standards such
as IEC-61508 traces requirements
to V&V

« But where are the requirements in a
machine learning based system?

 The machine-learning software Is
just a framework...the training data
form de facto requirements

SYSTEM | & _____II RACEABILITY
SPECIFICATION

VERIFICATION &

Review

VERIFICATION &
TRACEABILITY

PROGRAM
SPECIFICATION

VERIFICATION &
MODULE TRACEABILITY

SPECIFICATION

Review

SOURCE

UBSYSTEM/
COMPONENT |at= == = = = TROCRABILTY | |
SPECIFICATIO

VALIDATION & TRACEABILITY ACCEPTANC

: SYSTEM
...... | INTEGRATION
& TEST

85

SUBSYSTEM/

= == = P COMPONENT

__ | PROGRAM
TEST

= UNITTEST

Review

CODE
Review

(Koopman and Wagner, 2016)

@AUTO MATE - 201/



Challenge: Lack of Requirements

* How do you know the training data
are “complete™?

* Incorrect training data are safety-
critical artifacts and must be handled
rigorously

* What if a moderately rare case isn’t in
the training set? It might not behave
as you expect.

* People’s perception of “almost the
same” stimulus does not predict a
deep learner’s responses!
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“Baseball”

(Nguyen et al., 2015)
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Monitor / Actuator Architecture

 All safety requirements are allocated to Monitor

« Monitor performs safety shutdown if unsafe
outputs/state detected

« Monitor is non-ML software that enforces a safety INPUTS Asqur. A/ cRoss
“envelope” | DOWN W

* Actuator Is the perception or planning software MONITOR

« Usually works
« But, might sometimes be unsafe
 Failures are availability problems, not safety problems

* In practice, we've had success with this approach

« E.g., over-speed shutdown on APD

* Important point: need to be clever in defining what
‘“safe” means to create monitors

ACTUATOR =3 OUTPUTS

APD is the first unmanned vehicle to use the Safety Monitor.
(Unclassified: Distribution A. Approved for Public Release. TACOM
Case # 19281 Date: 20 OCT 2009)

@AUTO MATE - 201/



Why Do We Test?

 Traditional testing confirms proper functionality

* Machine learning uses inductive learning, which is vulnerable to
“black swan” failures

« SO given what we don’t know, we also need testing to try to
falsify correctness hypotheses

Make sure to fault inject
some “black swans”

@AUTO MATE - 201/



Robustness Testing

Switchboard robustness
testing cuts through the
endless number of possible
tests and finds problems you
don’t expect.
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Robustness Testing
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Conclusions

 We use non-determinism, deep learning, etc. when we don’t
know how something works
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Conclusions

* We use non-determinism, deep learning, etc. when we don't
know how something works...and the nominal performance
of these techniques is excellent!
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Conclusions

* We use non-determinism, deep learning, etc. when we don't
know how something works...and the nominal performance of
these techniques is excellent!

» But they confound traditional safety practices
« Smart choices about system architecture can help

 Verification must aggressively pursue latent and
unexpected safety risks
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Conclusions

* We use non-determinism, deep learning, etc. when we don't
know how something works...and the nominal performance of
these techniques is excellent!

» But they confound traditional safety practices
« Smart choices about system architecture can help

* Verification must aggressively pursue latent and unexpected
safety risks

« Call us, we can help :)
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Contact Information

Michael Wagner
Co-founder and CEO

Edge Case Research LLC
The Ice House Building

100 43" St, Suite 208
Pittsburgh, PA 15201

USA

412-606-3842
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Backup: Standards Requirements (1)

1ISO 15066 "

1ISO 10218

In variable speed setting situations, the speeds of the robot system and of the operator are used to
determine the applicable value for the protective separation distance at each instant. Alternatively,
the maximum allowed robot speed can be determined based on operator speed and actual
separation distance between the robot and operator. The control function to accomplish this shall
comply with ISO 10218-2:2011, 5.2.2.

5.2.2 Performance requirement

Safety-related parts of control systems shall be designed so that they comply with PL=d with structure
category 3 as described in 1ISO 13849-1:2006, or so that they comply with SIL 2 with hardware fault tolerance
of 1 with a proof test interval of not less than 20 years as described in IEC 62061:2005.

This means in particular;

a)

b)

c)

d)

a single fault in any of these parts does not lead to the loss of the safety function,

whenever reasonably practicable, the single fault shall be detected at or before the next demand upon the
safety function,

when the single fault occurs, the safety function is always performed and a safe state shall be maintained
until the detected fault is corrected,

all reasonably foreseeable faults shall be detected.

The requirements a) to d) are considered to be equivalent to structure category 3 as described in
1ISO 13849-1:2006

NOTE The requirement of single-fault detection does not mean that all faults will be detected. Consequently, the
accumulation of undetected faults can lead to an unintended output and a hazardous situation at the machine.
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Backup: Standards Requirements (2)

1ISO 13849

Table 7 — Simplified procedure for evaluating PL achieved by SRP/CS

Category B 1 2 2 3 3 4
. m
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Category 3 Architecture
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Testing
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We configure our robustness-
testing tools to work with your
software system and develop
testing strategies tailored for
your software, its application,
and the processes in which it is
being developed. We can help
your development team
analyze bugs and other
vulnerabilities found, and
suggest improvements to avoid
problems in the future.
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Training
Services

ECR has conducted over 200
training engagements across a
variety of different companies,
industries, countries, and
cultures. Our trainers are a mix
of PhD researchers and senior
software engineers, experts in
the rigorous embedded
software development
processes that your
development teams require to
succeed.

Functional Y
Safety for

Autonomous

\Systems

Edge Case Research has
executed multiple functional
safety deployments of
autonomous vehicles and
robotics, and can help you do so
as well. Our team has a deep
background in this area, with
multiple members of our team
having over a decade of
experience developing and
testing autonomous robots and
vehicles.



