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Edge Case Research

Formed in 2013 by Carnegie Mellon researchers to make complex software more robust

Team of over ten people with deep experience in dependability, robotics, and testing

Clients across markets including consumer electronics, automotive, defense, robotics, mining, 

industrial, power, finance, etc.



Collaborative Robotics Today
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Collaborative Robotics of the Future

For some tasks, maximizing 

productivity will demand more 

sophisticated interaction than 

what is achievable with 

discretized safety zones.

Image: Peter Yang



A General Formulation of the Problem

Safety (green) and danger (red) zones. As long as these zones are disjoint (left) then safety is maintained 

and robots may operate normally. Once they intersect (right) safety may be compromised and robots must 

achieve a safe state. (Anderson-Sprecher, 2011)



Example: The Hybrid Safety System

Image: Carnegie Mellon

Carnegie Mellon developed the 
HSS for the Office of Naval 
Research’s Automated 
Weapons Assembly program for 
semi-automated work cell for 
shipboard munitions assembly.



Autonomy Meets Safety

“Validation: The process of determining that the 

requirements are the correct requirements and that 

they are complete.”

Software Considerations in Airborne Systems 

and Equipment Certification

(RTCA DO-178C)



Autonomy Meets Safety

“Uncertainty arises because of both 

laziness and ignorance. It is inescapable 

in complex, nondeterministic, or 

partially observable environments.”

Stuart Russell and Peter Norvig



Collaborative Robotics Technologies

High-Dimensional 

Motion Planning

Perception 

and Modeling



Motion Planning

• Highest performance approaches 
involve Monte Carlo sampling

• Implications for testing and validation:
• If you can carefully control random 

number generator, maybe you can 
reproduce behavior in unit test

• Test reproducibility may be impossible at 
the system level

• Validation demands a large, statistically 
significant number of tests across many 
different scenarios

• Algorithm failures may not indicate test 
failures

(Choudhury et al., 2015)

Video: MIT



Perception

• Ultimately we want the safety system to 
sense the location, speed, and posture 
of all persons in the work cell

• 3D perception is an extremely complex 
problem!

(Felzenszwalb et al., 2010)



Perception is Deep Learning

(Sapunov, 2016)



Challenge: Legibility of Deep Learning

• Can humans understand how 
deep learning works?

• Deep learning “learns” features and 
rules from training data

• Commonly the weighting is 
inscrutable, or at least not intuitive

• There is an unknown (significant?) 
chance results are brittle

• E.g., accidental correlations in training 
data, sensitivity to noise



Challenge: Brittleness
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Challenge: Lack of Requirements

• The “V process” model prescribed 
by software safety standards such 
as IEC-61508 traces requirements 
to V&V

• But where are the requirements in a 
machine learning based system?

• The machine-learning software is 
just a framework…the training data 
form de facto requirements
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Challenge: Lack of Requirements

• How do you know the training data 
are “complete”?

• Incorrect training data are safety-
critical artifacts and must be handled 
rigorously

• What if a moderately rare case isn’t in 
the training set? It might not behave 
as you expect.

• People’s perception of “almost the 
same” stimulus does not predict a 
deep learner’s responses!

“Dumbbell”“Baseball”

(Mordvintsev et al., 2015)(Nguyen et al., 2015)



Monitor / Actuator Architecture

• All safety requirements are allocated to Monitor
• Monitor performs safety shutdown if unsafe 

outputs/state detected

• Monitor is non-ML software that enforces a safety 
“envelope”

• Actuator is the perception or planning software
• Usually works

• But, might sometimes be unsafe

• Failures are availability problems, not safety problems

• In practice, we’ve had success with this approach
• E.g., over-speed shutdown on APD

• Important point: need to be clever in defining what 
“safe” means to create monitors

APD is the first unmanned vehicle to use the Safety Monitor. 

(Unclassified: Distribution A. Approved for Public Release. TACOM 

Case # 19281 Date: 20 OCT 2009)



Why Do We Test?

• Traditional testing confirms proper functionality

• Machine learning uses inductive learning, which is vulnerable to 
“black swan” failures

• So given what we don’t know, we also need testing to try to 
falsify correctness hypotheses

Thousands of miles of “white swans”…
Make sure to fault inject 

some “black swans”



Robustness Testing

Switchboard robustness 

testing cuts through the 

endless number of possible 

tests and finds problems you 

don’t expect.



Robustness Testing
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• We use non-determinism, deep learning, etc. when we don’t 
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Conclusions

• We use non-determinism, deep learning, etc. when we don’t 
know how something works…and the nominal performance of 
these techniques is excellent!

• But they confound traditional safety practices

• Smart choices about system architecture can help

• Verification must aggressively pursue latent and unexpected 
safety risks

• Call us, we can help :)
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Backup: Standards Requirements (1)

ISO 15066

ISO 10218



Backup: Standards Requirements (2)

ISO 13849

Category 3 Architecture



We configure our robustness-
testing tools to work with your 
software system and develop 
testing strategies tailored for 
your software, its application, 
and the processes in which it is 
being developed. We can help 
your development team 
analyze bugs and other 
vulnerabilities found, and 
suggest improvements to avoid 
problems in the future.

ECR has conducted over 200 
training engagements across a 
variety of different companies, 
industries, countries, and 
cultures. Our trainers are a mix 
of PhD researchers and senior 
software engineers, experts in 
the rigorous embedded 
software development 
processes that your 
development teams require to 
succeed. 

Edge Case Research has 
executed multiple functional 
safety deployments of 
autonomous vehicles and 
robotics, and can help you do so 
as well. Our team has a deep 
background in this area, with 
multiple members of our team 
having over a decade of 
experience developing and 
testing autonomous robots and 
vehicles.


