Fundamental Guide to Industrial Networking

Jeff Kordik
CTO
Applied Motion Products
A Connected World

• Buy a phone or tablet you expect connectivity
• Your phone can connect to a cell tower, the internet, GPS satellites, the audio system in your car, and your TV set
• If your car isn’t on the internet, your next one will be. Already devices within are on CAN bus
• By 2020 it is expected that 50 billion devices will be interconnected. My phone can talk to the thermostat in my home right now.
Connectivity in Automation

Devices in the automation world also need to talk
• To gather information from sensors
• And send control signal to actuators

Communication standards are essential
• Hardware & software defined protocols
• Get the data there
• Be sure it got there
• Know what it means to both ends
Connectivity in Automation

There are dozens of industrial networking standards

• If you’re starting an application, how do you choose?
• If you are planning to build products, which networks will bring the most success?
• Let’s compare and contrast the most popular industrial networks
• And hopefully learn enough to make an informed choice of which to use
Serial versus Ethernet

Most popular industrial networks started out on serial bus

- 1970’s and 1980’s

- RS-485 or CAN were available at the time to serve as the physical layer: the wires, connectors and IC’s the network is built on
Serial versus Ethernet

Rapid growth of Ethernet in office nets

• Drove Ethernet costs down, speed up
 • Serial bits rates: 9.6k to 12Mbits/sec
 • Ethernet: 100 – 1000 Mbits/sec

• 32 bit IP addressing allows practically unlimited number of nodes

• 16 bit ports allow multiple protocols to “share the wire”

• Most fieldbus standards were adapted to Ethernet in early 2000’s
Many popular serial protocols have been updated to run on Ethernet

- Modbus/RTU → Modbus/TCP
- DeviceNet → EtherNet/IP
- CANopen → EtherCAT COE
- Profibus → Profinet
- CC-Link → CC-Link IE
Serial versus Ethernet

Why migrate to Ethernet?
• More speed
• More nodes
• Mixed protocols on same net
Serial versus Ethernet

- The Industrial Ethernet market is growing by 22% annually
- Serial is growing just 4%

Worldwide Industrial Network Usage

- 48% Ethernet
- 46% Serial
- 6% Wireless
Serial Based Networks

Relative Popularity of Serial Protocols

- Profibus: 29%
- Modbus RTU: 14%
- CC-link: 12%
- DeviceNet: 8%
- CANopen: 10%
- Other: 27%

HMS Industrial Networks
Ethernet Based Networks

Relative Popularity of Ethernet Protocols

- EtherNet/IP: 28%
- Profinet: 24%
- EtherCAT: 15%
- Modbus TCP: 9%
- Other: 9%
Geography

• North America
 • Rockwell: DeviceNet, EtherNet/IP
 • Galil, Trio, National Instruments, CTC: EtherCAT

• Europe
 • Siemens: Profibus, Profinet
 • Beckhoff: EtherCAT

• Asia
 • Mitsubishi: CC Link

• Modbus is used everywhere

There is much fragmentation: Choose wisely or choose all
Typical Ethernet Model

- 5 Layers:

Application

UDP TCP

Internet Protocol

Ethernet

Ethernet

Application layer
Transport layer
Network layer
Data link layer
Physical layer
Modbus RTU

• Introduced by Modicon, a PLC maker, in 1979.
• First popular industrial network.
• Ubiquitous, easy to use, cheap.
• Reliable but not fast: 9.6k to 115k bits/sec.
• Tames RS-485 which is otherwise a less than reliable medium
• Good communication standard but not specialized for applications
• Standard organization: The Modbus Organization
Modbus RTU Typical Network

- **RS-232** is point to point so only one slave device can connect
• RS-485 allows multiple devices to share the network.
• All devices share a parallel, **two wire bidirectional bus**
• Up to 247 devices, depending on manufacturer
• Most RS-485 transceivers limit the number of nodes to 32
• RS-485 can also be implemented as a four wire network.
• Modbus is inherently half duplex so using four wires does not increase network bandwidth
• Modbus masters always wait for a response (or a time out) before sending another message
Modbus RTU Physical Layer

- Simple and low cost
- Most DSP and MCU have built-in UARTs, making Modbus designs incredibly simple and affordable

![Modbus RTU Physical Layer Diagram]
Modbus TCP

• Introduced in 1999 by Schneider Electric
• Runs on standard Ethernet TCP/IP
• more speed (1000x), more devices on the wire
• Can share the network with other protocols and standard TCP/IP traffic
Typical Modbus TCP Network

- IPv4 allows nearly unlimited addressing (2^{32} devices)
- A typical subnet would be limited to 2^8 or 2^{16} devices
Modbus TCP Dual Port Network

- IPv4 allows nearly unlimited addressing (2^{32} devices)
- A typical subnet would be limited to 2^8 or 2^{16} devices

![Network Diagram]

Modbus

AUTOMATE • 2017
Modbus TCP Physical Layer

- MAC/PHY can be built into CPU – very common in ARM processors – simple, low cost
- Magjack includes transformers and RJ-45 jack
- For harsh environments, M12 connectors can be used with separate magnetics
Modbus TCP Physical Layer (Dual Port)

- Dual port Ethernet provides a “daisy chain” network
- Eliminates Ethernet switches
- Useful where a star topology is inconvenient
CANopen

• Introduced in 1995
• Standards body: CAN in Automation (CiA)
• Many things defined by standards
 • CIA301 – communication
 • CIA402 – motion
• Standards improve but do not guarantee interoperability.
 • Example: CIA402 object 606C is motor actual velocity
 • But scaling is not defined. Could be RPM, steps/sec, etc.
CANopen Typical Network

- All devices share a parallel, **two wire bidirectional bus**
- Up to 127 devices
CANopen Physical Layer

- Simple and low cost
- Many DSP and MCU have built-in CAN controllers, making CANopen hardware designs inexpensive
EtherCAT COE

• Introduced in 2003 by Beckhoff
• Same issue as CANopen but very real time, intelligent.
• To make up for loose standards definition, devices get “baked in”. Partnering, pay to play
• EtherCAT is opening up.
 • Not long ago, the only solution was strapping a Beckhoff ASIC to a processor.
 • Now you can get alternate EtherCAT slave controllers
 • Or ARM processors with built-in EtherCAT hardware
Typical EtherCAT Network

- Up to 65,535 nodes
EtherCAT Physical Layer

- Always dual port, no external switches
- Slave node: large footprint design, relatively expensive
DeviceNet

• Developed by Allen-Bradley (now Rockwell)
• Introduced in 1994
• Uses CIP protocol on CAN physical and data link layers
• Low cost to implement
 • Many DSP’s and MCU’s have built-in CAN controllers
 • Can transceivers are widely available and inexpensive
DeviceNet Typical Network

- All devices share a parallel, **two wire bidirectional bus**
- Up to 127 devices
DeviceNet Model

Diagram:
- Slave Device Application
- CIP Protocol
- DeviceNet Transport
- CAN
- DeviceNet Physical

Layers:
- Application layer
- Transport layer
- Network layer
- Data link layer
- Physical layer
DeviceNet Physical Layer

- Simple and low cost
- Many DSP and MCU have built-in CAN controllers, making DeviceNet hardware designs inexpensive
EtherNet/IP

- Developed by Allen-Bradley (now Rockwell)
- Introduced in 2001
- Standards organization: ODVA
- Runs on standard Ethernet
- Uses Common Industrial Protocol (CIP)
- Uses TCP transport for explicit messages
- UDP for fast, cyclical implicit messaging
IPv4 allows nearly unlimited addressing (2^{32} devices)
A typical subnet would be limited to 2^8 or 2^{16} devices
EtherNet/IP Network Model

- Application layer
 - Slave Device Application
 - EtherNet/IP
 - CIP Protocol
 - UDP/TCP
 - Internet Protocol
 - Ethernet
- Transport layer
- Network layer
- Data link layer
- Physical layer
EtherNet/IP Physical Layer

- MAC/PHY can be built into CPU – very common in ARM processors – simple, low cost
- Magjack includes transformers and RJ-45 jack
- For harsh environments, M12 connectors can be used with separate magnetics

Dual port solutions are also popular
Profibus DP

• Devised in Germany in 1987
• Primary controller: Siemens
• Popular in Europe
• Enhanced RS-485 physical layer
• Speeds to 12 Mbits
• Requires ASIC for data link layer
• Enhanced RS-485 allows multiple devices to share the network at high speeds
• All devices share a parallel, **two wire bidirectional bus**
• Up to 32 devices per segment
Profibus DP Network Model

- Slave Device Application
- DPVx Protocol
- FDL
- Enhanced RS-485

Application layer
Data link layer
Physical layer
At least one ARM CPU is available with a built-in Profibus subsystem,
 • eliminates need for ASIC
 • eliminates potential need for parallel bus

Profibus DP Physical Layer

Parallel or SPI bus

CPU → Profibus ASIC → Enhanced RS-485 Transceiver → network
Profinet IO

- Introduced in 2003 by PI working group
- PI North America is standards organization
- Built on standard Ethernet
- Uses UDP and TCP transport
- Can “share the wire” with other protocols
Profinet IO Typical Network

- Thousands of nodes are possible
Profinet IO Network Model

- **Application layer**
 - Slave Device Application
 - Profinet IO
 - UDP
 - TCP

- **Transport layer**
 - Internet Protocol

- **Network layer**
 - Ethernet

- **Data link layer**
 - Ethernet

- **Physical layer**
Profinet IO Physical Layer

CPU

MAC

PHY

Magjack

network
<table>
<thead>
<tr>
<th></th>
<th>serial bus</th>
<th>Ethernet</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>year introduced</td>
<td>Modbus RTU</td>
<td>DeviceNet</td>
<td>Profibus DP</td>
<td>CANopen</td>
<td>Modbus TCP</td>
<td>EtherNet/IP</td>
<td>ProfiNet IO</td>
<td>EtherCAT COE</td>
</tr>
<tr>
<td>max physical layer speed (Mbits/sec)</td>
<td>0.1</td>
<td>0.5</td>
<td>12</td>
<td>1</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>100</td>
</tr>
<tr>
<td>max nodes</td>
<td>32 typ</td>
<td></td>
<td>32/segment, 126</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>254 max</td>
<td></td>
<td>max</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>share wire?</td>
<td>cyclic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cyclic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>motion specific option</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>standards body</td>
<td>Modbus Org</td>
<td></td>
<td>ODVA</td>
<td>PNO, PI</td>
<td>CIA</td>
<td>Modbus Org</td>
<td>ODVA</td>
<td>PI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>controllers</td>
<td>many</td>
<td></td>
<td>many</td>
<td></td>
<td></td>
<td>mainly Rockwell</td>
<td>Beckhoff, Siemens</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relative cost of slave node</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td>10</td>
</tr>
</tbody>
</table>

Summary

- Serial bus protocols: Modbus RTU, DeviceNet, Profibus DP, CANopen, Modbus TCP, EtherNet/IP, ProfiNet IO, EtherCAT COE
- Ethernet protocols: Modbus TCP, EtherNet/IP, Profinet IO, EtherCAT COE

- Serial bus protocols are typically used in automation and industrial control systems, while Ethernet protocols are used in a wide range of applications, including industrial automation.

- The table compares various characteristics of these protocols, including year introduced, maximal physical layer speed, maximal nodes, share wire, cyclic, motion specific option, standards body, controllers, and relative cost of slave node.
Implementation Options

How do I go about designing a fieldbus node?

• If the device already has a fieldbus option, consider using an external gateway to convert the protocol

• Use HMS Anybus module to device can be adapted to many popular protocols

• Buy a commercial software stack (RTA)
 • Design your own physical layer
Implementation Options

Pay to Play

• Some standards require you to pay an annual fee
 • For access to written standards
 • For test tool subscriptions
 • For a vendor ID

• Additional fees apply for
 • Conformance testing
 • Plug fests
Other Considerations

Distributed Intelligence

• A stored program in each node can reduce needed bandwidth for non-tightly coordinated axes

• Individual nodes can read I/O, make decisions, execute motion

• Can be cost effective because stored programming in an already needed CPU costs little (beyond software development)

• Still has benefit of real time connectivity, streaming set up, feedback, data logging
Other Considerations

Step & Direction
• Controller sends step pulses and a direction signal to each motion node

Advantages
• Motion can be tightly coordinated
• Very low slave cost
Other Considerations

Step & Direction

Disadvantages

• No certainty if signals reached the node
• Only feedback is fault signal.
• No status monitoring or data logging
Contact

Jeff Kordik
CTO

Applied Motion Products
Watsonville, CA 95076
USA
(800) 525-1609
jeffkordik@applied-motion.com