3D Vision System Development

Mattias Johannesson
Expert, 3D Vision
Agenda

• Why do we need 3D Vision?
• Definitions in 2D & 3D Vision
• 3D Techniques and Applications
 – What fits where?
• Conclusions
Why 3D?

This IS a photo of a real object!
Why 3D?

This is a 3D camera image of the same object
Why 3D?

Different 2D view of same object...
3D Vision Use

- To locate
- To identify
- To inspect
- To measure
- To navigate

3D more difficult than 2D!
 - Get good “image”
 - Illumination more critical than in 2D
 - Use capable SW package
 - Avoid reinventing the wheel
Data Types

- **2D intensity**
 - 2D array of brightness/color pixels

- **2.5 D range**
 - 2D array of range/height pixels
 - Single view-point information
 - Depth Map / Distance Map

- **3D surface range data**
 - Surface coordinates [x,y,z]
 - Point cloud data

- **3D "voxel"**
 - A volume [x,y,z] of densities
 - e.g., CT scan
Data Types

- **2D intensity**
 - 2D array of brightness/color pixels

- **2.5D range**
 - 2D array of range/height pixels
 - Single view-point information
 - Depth Map / Distance Map

- **3D surface range data**
 - Surface coordinates [x,y,z]
 - Point cloud data

- **3D "voxel"**
 - A volume [x,y,z] of densities
 - e.g., CT scan
Map of 3D

Base Technologies:
- Triangulation
- Time-of-flight
- Interferometry
Map of 3D

3D imaging

Passive
- Focus
- Lightfield
- Stereo

Active
- Structured Light
- Interferometry
- Time-of-flight
 - Binary Coded
 - Phase Coded
 - CW
 - Pulsed
Map of 3D

3D imaging

Passive
- Focus
- Lightfield
- Stereo

Active
- Structured Light
- Interferometry
- Time-of-flight
 - CW
 - Pulsed

Binary Coded
Phase Coded
Map of 3D

3D imaging

Passive
- Focus
- Lightfield
- Stereo

Structured Light
- Shading
- Laser Triangulation
- Binary Coded

Active
- Interferometry
- Time-of-flight
- Phase Coded
- CW
- Pulsed

Active Triangulation
- Where is the light
Map of 3D

3D imaging

Passive
- Focus
- Lightfield
- Stereo

Active
- Structured Light
- Interferometry
- Time-of-flight
 - CW
 - Pulsed

Shading
- Laser Triangulation
- Binary Coded
- Phase Coded

Time-of-flight
- When is the light
Map of 3D

- **3D imaging**
 - Passive
 - Focus
 - Lightfield
 - Stereo
 - Active
 - Structured Light
 - Interferometry
 - Time-of-flight
 - CW
 - Pulsed

Interferometry
- *How is the light*
Acquisition Speed

• Basic Acquisition strategies:
 • Snapshot
 – Stereo
 – Primesense / "Kinect 1"
 – Time-of-flight array camera
 • "Almost" snapshot
 – Coded light projection
 – Moving camera stereo
• 1D scanning
 – Laser triangulation + Linear movement
 – 1D scanning (depth from focus, interferometry)
• 2D scanning motion
 – 2D scanner
 – Linear movement of object + 1D scanning
Accuracy

• **Resolution**
 - Pixel size $\Delta X, \Delta Y$
 - Not Feature size!
 - ΔZ – depth resolution

• **Repeatability**
 - First step to accuracy

![Diagram showing low, mid, and high accuracy levels with corresponding repeatability.](image)
Accuracy

- **Resolution**
 - Pixel size ΔX, ΔY
 - Not Feature size!
 - ΔZ – depth resolution

- **Repeatability**
 - First step to accuracy
Accuracy

• Resolution
 – Pixel size $\Delta X, \Delta Y$
 • Not Feature size!
 – ΔZ – depth resolution

• Repeatability
 – First step to accuracy

• Accuracy
 – If the system is repeatable then accuracy is “just” calibration
Calibration

- Map Relative image coordinates to World coordinates

![Diagram showing calibration process](image)
Calibration

- Map Relative image coordinates to World coordinates

\[u' = u + u_0 \left(c_1 r^2 + c_2 r^4 \right) + 2c_3 u_0 v_0 + c_4 \left(r^2 + 2u_0^2 \right) \]

\[v' = v + v_0 \left(c_1 r^2 + c_2 r^4 \right) + 2c_4 u_0 v_0 + c_3 \left(r^2 + 2v_0^2 \right) \]

\[u_0 = u - u_c \]

\[v_0 = v - v_c \]

\[r = \sqrt{u_0^2 + v_0^2} \]
Calibration Procedure

• Measure a known target, let the SW crunch the data...
 – Many Software options for calibration available
Calibration – Rectification

- Calibration gives world coordinate point cloud
 - Z image plane distorted
- Rectification gives image fit for "standard" processing
 - One Z value for each grid {X,Y} coordinate

Calibrated (x, r) points

Rectified profile

Uniform pixel grid
Calibration – Rectification

Uncalibrated, non-linear depth map
Calibration -> Point Cloud

Rectification
Resampling to grid
- uniform : \(\Delta X, \Delta Y \)
In depth map
3D Imaging Methods

- Triangulation
 - Stereo
 - Structured light
 - Sheet-of-light
 - Projected patterns

- Time-of-flight

- Misc.
 - Shading
 - Focus
 - Light field
 - Interferometry
Triangulation Methods

3D imaging

Passive
- Focus
- Lightfield
- Stereo

Active
- Structured Light
- Interferometry
- Time-of-flight

- Shading
- Laser Triangulation
- Binary Coded
- Phase Coded

- CW
- Pulsed
Triangulation Principle

\[\gamma = 180 - \alpha - \beta \]

\[L_1 = \frac{B \cdot \sin \beta}{\sin \gamma} \]

Robustness:
- Large B
- Large \(\gamma \)
Laser Triangulation

3D imaging

Passive
Focus Lightfield Stereo

Structured Light

Active
Interferometry Time-of-flight

Shading Laser Triangulation Binary Coded Phase Coded CW Pulsed
Laser Line Triangulation

- Camera view
- Sensor Image
- 3D profile

Range (mm)

Width (mm)
Laser Line Triangulation
Laser Line Profile Extraction

- Each 2D intensity image -> 1 3D profile
 - High frame rate needed
 - Sensor/camera processing
 -> early data reduction
- Find peak position / column
 - High sub-pixel resolution is possible,
 e.g. Center-Of-Gravity,
 Interpolated peak position, etc.
Geometry Options 1(2)

- Vertical laser gives “natural slicing”
- $\Delta z \sim \Delta x / \sin(\alpha)$ Δx is pixel resolution in width
- $\Delta z > \Delta x$
Geometry Options 2(2)

- Vertical camera gives good 2D imaging options
 - can give very high Z resolution
- \(\Delta z \sim \Delta x / \tan(\beta) \)
 - \(\Delta x \) is pixel resolution in width
- \(\Delta z > \Delta x \) for \(\beta < 45 \)
- \(\Delta z < \Delta x \) for \(\beta > 45 \)

Uncalibrated depth map
Laser Line Width Considerations

- **Narrow line**
 - Poor sub-pixel resolution
 - Intensity modulation effects

- **Wide line**
 - High-resolution sub-pixeling
 - In good conditions ~1/10\(^{th}\) of a pixel reasonable
 - Wide line can give artifacts...

- ~5 pixel width @ 50% of peak “ok”
Wide Laser Line Observations

- The laser covers multiple pixels ... and can hit a distance transition or intensity modulation
- Laser speckles gives noise on the peak
Use Sharp Images!

- The plane in focus is parallel to the lens and sensor planes
- We want focus on laser plane
- Tilt sensor/lens to get plane in focus

Scheimpflug Principle!
Scheimpflug in use

- Example sensor image in laser triangulation
Laser Triangulation Products

• Product examples
 – Algorithm support in vision SW packages
 – SICK Ranger/Ruler/Trispector - Proprietary CMOS sensor, multi scanning/color
 – Automation Technology - Fast CMOS sensors and FPGA processing
 – Photonfocus - Fast CMOS sensors + Lin-Log response

Booth #1655

Booth #2552
Laser Triangulation Conclusions

• Benefits
 – “Micrometer to mm” resolution scalability
 – Fast and robust
 – With Moving objects -> No additional scanning needed

• Limitations
 – Occlusion (shadow effects)
 – Laser speckles
 – Not suitable for large outdoor applications (~ > 1 m FOV)
 – Not snapshot

• Typical applications have linear object motion :
 – Log/board/veneer wood inspection
 – Electrical components / solder paste
 – Food and packaging
Stereo Imaging

\[B \]

\[\alpha \]

\[\beta \]

\[L_1 \]

\[L_2 \]

\[P(x, y) \]
Stereo Imaging

- Stereo is based on (at least) 2 views of a scene
 - Human vision....

- Key is matching between the images
 - But pixels are not at all unique so ...
 - Either (uniform) patches of pixels are matched or
 - Distinct features/landmarks are matched

- So, where do we match?
Where to Match?

• Lens centers and rays create a plane – Epipolar plane
 – Epipolar plane intersects sensor plane on a line
 • Match Along a line in a plane defined by Baseline & Ray
 – This is the Epipolar line
Epipolar Lines

- Unrectified
 - tilted/curved epipolar lines
Epipolar Lines

- **Unrectified**
 - tilted/curved epipolar lines

- **Rectified**
 - aligned epipolar lines

- **Find Disparity**
 - Difference in position on row
Disparity Matching

Image Patch: $f(u,v)$

Epipolar swath: $g(u\text{-disparity},v)$

Classical Matching Function Examples

Sum of Absolute Difference: $\text{SAD} = \sum(|f(u,v)-g(u\text{-disparity},v)|)$

Sum of Square Difference: $\text{SSD} = \sum(f(u,v)-g(u\text{-disparity},v))^2$
Disparity Matching

\[f(u,v) \]

\[g(u\text{-disparity},v) \]
Disparity Matching

Match

$g(u \text{- disparity}, v)$

Disparity

Match
Disparity Matching

\[f(u,v) \]

\[g(u - \text{disparity},v) \]

Match

Best Match
Disparity Matching

• Matching algorithm is key
 – SSD/SAD correlation are common
 • Brightness matching -> High Pass Filter
• “Coarse” pixel correlation positions
 – Interpolate to find sub-pixel matching position

• Feature matching algorithms gives sparse image data
 – High precision on found features
• Middelbury Stereo Vision Pages
 – Data sets & Comparisons – Academic...
No Structure – No 3D
Structure Comparison

No structure

Active structure
Stereo Products

- IDS - Ensenso with “noise” illumination
- Flir (Point Grey) - 2/3 cameras
- Chromasens – line scan color
- Most vision SW packages
- And many others...

Booth #2629
"One cam Stereo" - Primesense (Kinect)

- Projected pattern
 - Fixed “random” pattern
 - Pattern designed to be unambiguous
 - Pattern is “Reference Camera image”
 - IR laser diode
- Grayscale sensor for 3D triangulation
 - Generates 640×480 pixels image
 - 30 fps

- A few mm depth resolution
 - As stereo - not independent per pixel

- Heptagon Zora
 ~current version
Stereo Conclusions

• Benefits
 – Standard cameras
 – Can “freeze” a moving object/scene
 – Real snapshot
 – Good support in vision SW packages

• Limitations
 – No structure - no data -> illumination constraints
 – Low detail level in X & Y – typically ~1:10 compared to pixels
 – Poor accuracy in Z
 – Limited Depth-of-field of camera

• Typical applications
 – Automotive safety/navigation
 – Traffic tolls – vehicle classification
 – Robot bin picking
Coded Structured Light

3D imaging

Passive
- Focus
- Lightfield
- Stereo

Structured Light
- Binary Coded
- Phase Coded

Active
- Interferometry
- Time-of-flight

Shading
- Laser Triangulation

CW
- Pulsed
Coded Structured Light

- Generally called Digital Fringe projection or often “structured light”
- Light modulation:
 - Binary [Gray coded]
 - Continuous phase shift - “sinus”
Coded Structured Light Technology

• 2D Sensor to grab 3D “snapshot”
 – Pattern defines illumination angle beta

• For each pixel the illumination ray must be identified
 – With a single pattern this gives poor angular definition
 • Or usage of multiple pixels to define the illumination
 – Multiple patterns increase resolution depth dimension
Binary Coded Structured Light

3D imaging

Passive
- Focus
- Lightfield
- Stereo

Active
- Structured Light
- Interferometry
- Time-of-flight

Structured Light
- Binary Coded
- Phase Coded

Interferometry

Time-of-flight
- CW
- Pulsed
Binary Coded

3 patterns – 8 directions

Gray code minimizes error impact
Illustration of depth uncertainty at “110”
Phase Coded Structured Light

3D imaging

Passive
- Focus
- Lightfield
- Stereo

Structured Light
- Shading
- Laser Triangulation
- Binary Coded

Active
- Interferometry
- Time-of-flight

Phase Coded
- CW
- Pulsed
But, for the camera it is just an intensity...
Phase Coded 2a

3 unknown:
\[I(x,y,t) = I(x,y) + I'(x,y) \cos(\varphi(x,y,t)) \]

\[t = 0 \]
Phase Coded 2b

3 unknown:
\[I(x,y,t) = I(x,y) + I'(x,y) \cos(\phi(x,y,t)) \]

\[t = 1 \]
Phase Coded 2c

3 unknown:
\[I(x,y,t) = I(x,y) + I'(x,y) \cos(\varphi(x,y,t)) \]

\[t = 2 \]
Phase Coded 2d

3 unknown:
I(x,y,t) = I(x,y) + I'(x,y)\cdot\cos(\varphi(x,y,t))

Analytical expression in each pixel
-> range, modulation, background

More common:
4 patterns with 90 degree separation
-> Simpler math & more robust
Phase Unwrapping

- High frequency -> High accuracy – Ambiguous
- Low frequency – Low accuracy – Unambiguous
- Combine results to unwrap
- In theory 2 frequencies are typically enough
- Typically 4-5 frequencies -> ~ 15-20 images / “snap”
- Coarse binary patterns + high frequency phase coded common
Conclusions Coded Structured Light

• Commercial system examples
 – ViaLux Z-snapper
 – LMI Gocator
 – Shape Drive

• Benefits
 – Very good 3D measurements, with quality measure
 – Independent measurement in each sensor pixel
 – Fast – “almost snapshot”

• Limitations
 – Needs static scene during multiple projection capture
 – The dynamic range in each pixel must be enough to make the phase calculation
 • Ambient, low/high reflection and specularities limit
 – 2 cameras common to overcome this
 • Large FOV difficult to realize.

• Typical applications
 – Reverse engineering shape capture
 – Medical imaging
 – Electronics inspection
High-speed / Hybrid

- **Fraunhofer**
 - Gobo-projector
 - Rotates fixed patterns
 - 360 Hz patterns
 - 36 Hz 3D
 - over 1 KHz 3D presented
- **Numetrix**
 - Reduced #exposures via beamsplitters/color separation
- **IDS X-series**
 - Pattern combines random dots and high frequency sinus, few shifts -> coarse and fine
Baseline vs Accuracy

- Baseline is distance between sensor and illumination or between cameras
- A larger baseline gives larger displacement on the sensor per Δz
 - Better resolution / accuracy
- A larger baseline gives more differences between the “views”
 - More areas not seen by both cameras - occlusion
 - Less accurate matching, especially for rounded structures and tilted surfaces
Occlusion Illustration

Intensity

Range

Camera Occlusion

Illumination Occlusion
Ambient Handling

• Ambient light not good!
Ambient Handling

- Ambient light not good
 - Interference filter on camera
Wavelength

- Focussing limits proportional to wavelength
 - Speckle size too
- IR: Invisible, but poor focussing, Eye safety issues
- Red: Cheap lasers, high CMOS/CCD sensitivity, high ambient
- Blue: Good focussing, less ambient, expensive

Comparison laser triangulation:

405 nm, 20 micron width
635 nm, 25 micron width
General Conclusions Triangulation

• Most common 3D principle
 – "Simple" methods
 – Robust if active
 – Reasonably fast
 – Reasonably accurate

• Difficult to scale to distances more than a meter or two
 ... which leads us to
Time-of-flight

3D imaging

Passive
- Focus
- Lightfield
- Stereo

Active
- Structured Light
- Interferometry

Time-of-flight
- CW
- Pulsed

Binary Coded
- Phase Coded
Time-of-flight

- Pulsed
 - Send a light pulse – measure the time until it comes back
 - Light speed 0.3 Gm/s ...
 at 1 m it comes back after ~7 ns
 - Measure “indirect” delay time
- CW - Continuous Wave
 - Modulated continuous illumination
 - Phase shift ~distance
 - Used in most TOF imager arrays
 - Low resolution due to complex pixels
- ~ a few mm-cm depth resolution
TOF CW

3D imaging

Passive
- Focus
- Lightfield
- Stereo
- Shading
- Laser Triangulation

Active
- Structured Light
- Interferometry
- Time-of-flight
- CW
- Pulsed
TOF with CW Modulated Light Source

• Modulate the light source intensity
 – Distance = Phase shift
 – e.g., \(f = 30 \text{ MHz} \Rightarrow 5 \text{ m} \)
 range ambiguity limit

• “4 capacitors per pixel”
 – one 90° phase interval each
 – Integrate for many periods
 • e.g., 20 ms \(\Rightarrow 5 \text{ ms/capacitor} \)
 – Find phase \(\varphi \) from the 4 values

• Wrapping problem for distances larger than e.g. 5 m

\[
d = c \frac{\varphi - \varphi_0}{4\pi f}
\]
Kinect One

- 512x424 @30 Hz
- Multi frequency CW
- Multi-exposure HDR
- SDK available
 - Not industrial...

TOF Pulsed

3D imaging

Passive
- Focus
- Lightfield
- Stereo

Active
- Structured Light
- Interferometry
- Time-of-flight

Structured Light
- Binary Coded
- Phase Coded

Interferometry
- CW
- Pulsed
Pulsed TOF Shutter Principle

Relationship between Gated and Full gives range

X-Y resolution today ~Megapixel, but Z resolution not as good as for CW.
TOF Array Conclusions

• Pulsed 2D array:
 – Basler, Odos & Fotonics VGA/XGA announced
 • 3D + color option

• CW 2D array
 – SICK 3vistor-T ~150x150 pixels
 – IFM Efector ~150x150 pixels

• Benefit
 – Snapshot

• Basic limitations
 – Z resolution > cm
 – X-Y resolution (CW)
 – Secondary reflections (CW)
 – Fast movements
 – Ambient light
 – Intra scene dynamic range

• Typical applications:
 – Gaming
 – People counting
 – Automatic milking machine
 – Navigation
Technology Comparison 1

- A test scene with a mix of objects & materials
 - ~1x1 m, cameras ~2 m away
Technology Comparison 2

TOF 3D
“Active”
Stereo 3D
Technology Comparison 4

Laser Triangulation 3D
Technology Comparison 6

Phase Coded 3D

3D TOF

Laser Triangulation 3D

Active Stereo 3D
Cross Section Boxes:
Phase pattern Projection,
Laser Triangulation
Stereo
TOF

~10 mm
Misc. 3D Methods

• Less common
 – Interesting theory
 – Special cases
Map of 3D

- 3D imaging
 - Passive
 - Focus
 - Lightfield
 - Stereo
 - Active
 - Structured Light
 - Laser Triangulation
 - Shading
 - Interferometry
 - Binary Coded
 - Phase Coded
 - Time-of-flight
 - CW
 - Pulsed
Shape from Shading

• Gives shape information, but not real distance
 – Shade from different directions of illumination gives surface orientation information
 – Integrating the orientation gives depth variations

• Limitations
 – Only surface orientation, no actual depth
 – No discontinuities allowed
Light-Field 3D 1

• Micro lens array used to create "4D" light-field image on standard image sensor
 – 2D direction "subpixels" in each 2D "pixel"
Light-Field 3D 2

- Processing of light-field image
 - Refocussing
 - 3D calculation
- Cameras – Raytrix
 - AIT Multi-line linescan
- Features
 - "No occlusion"
- Limitations
 - Depth accuracy "lens aperture triangulation"
 - Special cameras
 - Complex processing
Depth from Focus

• Grab a sequence of images focused from A to B
• Scan through the stack and find where local focus is maximized
 – That gives the range

• Features
 – No occlusion
 – No structured illumination needed

• Limitations
 – Slow
 – Needs structure to estimate focus
 – Pixel regions needed to estimate focus
 – Poor accuracy
 • “Triangulation using lens aperture”
Interferometry 1

Coherent (Laser) Light
- Periodic Interference
-> Flatness measurements

Incoherent (White) Light
- Interference @ same distance
-> Shape measurements
• **Features**
 – Sub-micron accuracy

• **Limitations**
 – Complicated scanning mechanics
 – Static scene needed during scan
3D Applications

Packaging

Electronics

Wood

Robotics

Printing

Transport

Logistics

Food

Automotive
3D Technology Overview

- Interferometry
- Coded Structured Light
- Laser Triangulation
- Stereo
- Time Of Flight

Z Resolution / Accuracy vs Distance / FOV size
Application Discussion 1

• Application requirements complex
 – What are the requirements for example, for a “good cookie”?
 – Iterative requirement work and testing a good way forward

• Basic requirements
 – Cost!
 – FOV size
 – Acquisition speed / object movement
 – Resolution X-Y-Z and accuracy requirements
 • Sampling theorem : at least (defect size) / 2 pixel size
 – Classification never 100% Detect Error – “Positive” :
 • Reject a Good Part : False Positives
 • Accept a Bad Part : False Negatives
 – Acceptance - define procedure, test objects and results.
 – Environment – ambient and size limitations, laser class limitations
Application Discussion 2

• Technology selection
 – Which technology would fit best?
 • Will the technology I have in my toolbox work?

• Early test
 – Try to get 3D data to prove/disprove visually the basic requirements
 • Can the defect be seen?
 • Can I see all aspects without occlusion?
 • Do I have enough signal without eye safety/cost issues?

• Don’t reinvent the wheel!
 – Buy the best subsystems for the application
Processing Software Options

- **MVTec Halcon**:
 - Very complete SW library, good 3D camera drivers
 - Booth #567
- **Matrox MIL**:
 - Software, Cameras & Vision processors
 - Booth #2424
- **AqSense SAL 3D**:
 - Dedicated laser profiling SW & 3D shape matching (bought by Cognex)
- **Stemmer CVB**:
 - A lot of tools
- **Open SW**:
 - Point Cloud Library: Extensive “big data” processing
 - OpenCV: Camera calibration, not much 3D
- **And many more...**
3D Camera Standard!

- Explicit 3D support in vision standards underway!
 - GenICam Feature definitions in place
 - GigE Vision support est Q2 2017

Companies using these standards include:

- MathWorks®
- STEMMER Imaging
- Active Silicon
- National Instruments
- Pleora Technologies

International Vision Standards
Booth #2921
A few App Examples
3D OCR / Code Reading

• VIN number stamped into car chassis
• Tire codes
"Backwards" Examples

Small FOV TOF 3D
- Milking Robots (LMI / Mesa)

Large FOV laser triangulation
- Timber truck load volume (SICK Ranger)
Road/Rail Inspection

- 3D laser line triangulation + line scan intensity/color
Train Inspection
Logistics with TOF

- Measure volume and size of box on pallet or conveyor

![Diagram showing volume and size measurement](image-url)
Robot Vision and 3D

• Random bin picking an old "Holy Grail"
• Overhead 3D vs "hand 3D"
• Main problems:
 – Object location / description
 • Geometrical primitives
 • CAD models
 – Finding pick point
 – Controlling robot

• ... Finally, general systems coming
Bin Picking in Action
3D Bin Picking System Example

• ScanningRuler sweeps laser over the scene
 – Complete 3D image

• Bin-picking application
 – Co-register coordinate system of camera system and robot
 – Estimate pose of picking candidates in 3D data
 – Ensure collision free gripping of the part
Finally

• Any questions ??

Mattias Johannesson
Expert 3D Vision, Core Design Identification and Measuring
Mattias Johannesson
Expert 3D Vision, Core Design Identification and Measuring

SICK IVP AB
Wallenbergs Gata 4
583 30 Linköping
Sweden

Phone: +46 13 362142
Email: mattias.johannesson@sick.com

www.sick.com